定制 xp-forge/pivot 二次开发

按需修改功能、优化性能、对接业务系统,提供一站式技术支持

邮箱:yvsm@zunyunkeji.com | QQ:316430983 | 微信:yvsm316

xp-forge/pivot

最新稳定版本:v3.2.0

Composer 安装命令:

composer require xp-forge/pivot

包简介

Pivot table

关键字:

README 文档

README

Build status on GitHub XP Framework Module BSD Licence Requires PHP 7.0+ Supports PHP 8.0+ Latest Stable Version

Working with pivot tables

Example

Given the following input, e.g. from a logfile:

2015-05-10 00:00:09 OK: 304 100 bytes
2015-05-10 00:00:48 GOOD: 200 102 bytes (ETag: 214ceb4b-980-3a7bbd9630480)
2015-05-10 03:00:49 ERROR: 404 512 bytes (Not found)
2015-05-11 00:00:17 OK: 304 102 bytes
2015-05-11 02:01:01 ERROR: 500 0 bytes (Internal Server Error)
2015-05-11 02:01:02 ERROR: 500 256 bytes (Internal Server Error)
...

We will parse this using sscanf(), transforming the lines into arrays like the following:

["2015-05-10", "00:00:48", "GOOD", 200, 95, "ETag: 214ceb4b-980-3a7bbd9630480"]

We can the load this into our pivot table using the array offsets (if we had a map, we could use its string keys; for objects we'll pass references to the getters and for more complex situations we can pass closures). Putting it together, we get the following:

use io\streams\{TextReader, FileInputStream};
use util\data\PivotCreation;

$pivot= (new PivotCreation())
  ->groupingBy(2)        // category
  ->groupingBy(3)        // code
  ->spreadingBy(0)       // date
  ->summing(4, 'bytes')  // bytes
  ->create()
);

$reader= new TextReader(new FileInputStream('measures.log'));
while (null !== ($line= $reader->readLine())) {
  $pivot->add(sscanf($line, '%[0-9-] %[0-9:] %[^:]: %d %d bytes (%[^)])'));
}

The resulting table will look something like this (using "b:" as an abbreviation for bytes - this becomes relevant once we sum on multiple columns):

.------------------------------------------------------- ~ ---------------------------.
|                    || Columns                             |                         |
|                    ||--------------------------------- ~ -|                         |
| Category  | Count  || 2015-05-10    | 2015-05-11    |- ~ -| Sum        | Average    |
|-----------|--------||---------------|---------------|- ~ -|------------|------------|
| OK        | 2      || 1, b:100      | 1, b:102      |- ~ -| b:202      | b:101      |
| GOOD      | 1      || 1, b:102      |               |- ~ -| b:102      | b:102      |
| ERROR     | 3      || 2, b:512      | 1, b:256      |- ~ -| b:768      | b:256      |
| ^- client | ^- 1   || ^- 1, b:512   |               |- ~ -| ^- b:512   | ^- b:512   |
|   ^- 404  |   ^- 1 ||   ^- 1, b:512 |               |- ~ -|   ^- b:512 |   ^- b:512 |
| ^- server | ^- 2   || ^- 1, b:0     | ^- 1, b:256   |- ~ -| ^- b:256   | ^- b:128   |
|   ^- 500  |   ^- 2 ||   ^- 1, b:0   |   ^- 1, b:256 |- ~ -|   ^- b:256 |  ^- b:128  |
|-----------|--------||---------------|---------------|- ~ -|------------|------------|
| Total     | 6      || b:714         | b:358         |- ~ -| b:1072     | b:178.7    |
`------------------------------------------------------- ~ ---------------------------´

Accessing values in a pivot

The number of records grouped by the grouping columns can be retrieved via count(). The aggregates can be accessed by passing the category to the respective methods.

$count= $pivot->count('OK');                                // 2
$count= $pivot->count();                                    // 6

$count= $pivot->records('2015-05-10', 'OK');                // 1
$count= $pivot->records('2015-05-10');                      // 4

$transferred= $pivot->column('2015-05-10', 'OK')['bytes'];  // 100
$transferred= $pivot->column('2015-05-10')['bytes'];        // 714

$transferred= $pivot->sum('OK')['bytes'];                   // 202
$transferred= $pivot->sum()['bytes'];                       // 1072

$average= $pivot->average('OK')['bytes'];                   // 101.0
$average= $pivot->average()['bytes'];                       // 178.7

Drill down

We can dril down by the categories we grouped on by using the rows() method. To calculate the distribution of categories in percent of the total, we'll use the count() method.

$rows= $pivot->rows();                         // ['OK', 'GOOD', 'ERROR']

// OK: 2 / 6 = 33.3%
// GOOD: 1 / 6 = 16.7%
// ERROR: 3 / 6 = 50.0%
$total= $pivot->count();
foreach ($rows as $cat) {
  $count= $pivot->count($cat);
  printf("%s: %d / %d = %.1f%%\n", $cat, $count, $total, $count / $total * 100);
}

// client: 1
// server: 2
foreach ($pivot->rows('ERROR') as $code) {
  printf("ERROR %s: %dx\n", $row, $pivot->count('ERROR', $code));
}

It can also interesting to see a development over time, so we'll drill down based on the columsn instead.

$columns= $pivot->columns();                   // ['2015-05-10', '2015-05-11']

// 2015-05-10: 714 / 1072 bytes = 66.6%
// 2015-05-11: 358 / 1072 bytes = 33.4%
$total= $pivot->total()['bytes'];
foreach ($columns as $date) {
  $bytes= $pivot->column($date)['bytes'];
  printf("%s: %d / %d bytes = %.1f%%\n", $date, $bytes, $total, $bytes / $total * 100);
}

统计信息

  • 总下载量: 31
  • 月度下载量: 0
  • 日度下载量: 0
  • 收藏数: 1
  • 点击次数: 1
  • 依赖项目数: 0
  • 推荐数: 0

GitHub 信息

  • Stars: 1
  • Watchers: 1
  • Forks: 0
  • 开发语言: PHP

其他信息

  • 授权协议: BSD-3-Clause
  • 更新时间: 2015-05-10